COMP2511: Object Oriented Programming
Introduction to Java:
· Platform independence: Solved the problem at the time where different binaries were only compatible to certain machines with C code.
· Write once (machine independent) Run multiple times across multiple platforms
· Each platform needs a virtual machine (Java runtime environment) to run the byte code
Differences between Java and C:
· No explicit pointers
· Automatic memory management Automatic garbage collection for unused memory
· Java compilers Just in time java compilation can result in speedup over static C compilers
· Java multithreading is in base Java, whilst you need libraries for C
· Just in time compilation + multithreading can result in faster Java code that optimises based on multithreading
· Increasingly, Java is actually more performant than C
Design paradigms: see “Designing a class” (below)
Types of Programming:
· Procedural programming:
· Action oriented
· Groups of actions are formed into functions and functions are grouped to form programs
· OOP:
· Create user-defined types called classes.
· Classes contain data about the entity it represents and the methods that manipulate the data
· Object: Instance of a user-defined type (i.e. instance of a class)
· OOP encapsulates data (attributes) and methods (behaviours) into objects
· Have the properly of information hiding
Inheritance:
· New classes (subclasses) are created from existing classes by absorbing their attributes and behaviours
· Subclass: Extends the super class. Adds behaviours, properties, etc. from the super class
· Things common between entities inherit those common properties from the super class
· Inheritance relationships form a tree-like hierarchical structure
· Method overwriting: Methods are defined by the closest method to the current class instance
Relationships:
· “Is-A” Inheritance relationship:
· An object of a subclass is treated as an object of the super class
· Use inheritance to model an “Is-A” relationship
· DON’T USE inheritance unless it makes sense to do
· E.G. Mathematically circles are a subset of all ovals. However, a circle class shouldn’t inherit from an oval class because an oval class can have methods to setHeight and setWidth These attributes and methods conflict with the definition of a circle
· “Has-A” Association relationship:
· Class object has an object of another class to store its state or do its work
· “Has-A” reference to another object
· These relationships are examples of creating new classes by composition of existing classes
Designing a class:
· Consider the functionality, different ways the object can be created, properties of data, etc.
· Always try to keep data private (local)
· Only accessible through methods
· Break up classes with too many responsibilities.
· Consider factoring out common attributes & behaviours between multiple classes into a superclass
· Then use suitable “Is-A” or “Has-A” relationships
Domain Modelling using UML:
· Designing and modelling classes are one of the most important practices in OOP
· How do we model the inter and intra-module relationships
· Relationships between classes that comprise a module
· Relationships between the modules themselves
· How should the methods that interact between classes work?
· Classes may have class-independent data
· Universal Modelling Language: UML class diagrams to represent domain models
· Assumptions Users can’t communicate their exact requirements
· Clarification document to client so you do not get screwed on the final demo.
· Types of relationships in UML:
· Dependency: A depends on B
· Aggregation: A class contains another class.
· A is associated with B. B persists even if A is deleted
· More associated with physical resources
· Composition: More restrictive aggregation, contained class is integral to the containing class. (cannot exist outside of the container)
· A is associated with B. B loses meaning / is discarded when A is deleted
· More associated with virtual objects / resources
· Undirected Association: Does not assume dependence.
· Directed Association: Indicated which class has knowledge of the other
[image:]
Figure 1 UML class representation
[image:]
Figure 2 UML Diagram Syntax
· UML representations: see relationships above
· Arrow: Inheritance = directed association
· Add cardinality to relations (1:0..N, 1:1, etc.)
· Domain Models: Visually represent domain concepts and the relationships between them
· Requirements analysis External behaviour
· Features and actors within the system
· Domain modelling Internal behaviour
· How the components of the system produce the expected behaviour
· ^ The two above concepts are mutually dependent
· High-level abstractions should be used instead of technical details (low-level)
Attributes vs Classes:
· Should something be an attribute or a class?
· If it cannot be represented by a primitive type (number, string) Likely should be represented by a class
Approaches to subclasses and inheritance:
· Philosophy: Don’t duplicate code, replace duplication with relationships
· “Has-A”: Uses method forwarding (methods from the has-a class to define some new methods)
· “Is-A”: Extends super methods, modifications to super class propagate to your implementation
· Abstract class: Define framework of methods in super-class that acts like a common interface across all subclasses
· Interface: Classes that implement interfaces must implement all the interface functionality
Polymorphism: An object’s ability to decide what method to apply to itself, depending on where it is in the inheritance hierarchy
· Objects can be cast as the abstract class or the interface it implements, and these casting can result in different behaviours for the same method
· Dynamic binding: Methods are bound to objects after creation Even after it is cast to the superclass
Method forwarding:
· If a class implements an interface, we can reuse code from other classes that implement the interface - called method forwarding
· Create new class that corresponds to another class that implements the interface method --> "Has-A" Relationship
· Allows us to selectively choose methods --> Sometimes we don't want to inherit every method from another class.
Method overriding:
· Methods in a class override methods in the superclass if the methods have the same name, return type, and position of typed arguments.
Method overloading:
· A single method name can have multiple implementations by varying the arguments or return types
Constructor:
· Super classes’ no argument constructor is implicitly added if the first argument of the constructor is not a super() or this() call
· Calls super() up to the default Object class in java
· Constructors are implicitly inserted into a class if they are not defined
Good Design Principles:
· Assume software requirements can and will change
· Flexibility and extensibility to accommodate these changes
· Maintainable, reusable, extensible design
· Design smell: Violation of key design principles. We want to avoid these!
· Rigidity: Too difficult to change
· Fragility: Breaks in many places when a single change is implemented
· Immobility: Hard to reuse
· Viscosity: Changes are easier to implement through ‘hacks’ over ‘design preserving methods’
· Opacity: Difficult to understand modules
· Needless complexity / Repetition: Start with readable code.. You don’t need to introduce unnecessary complexity to save like 2 CPU cycles
· Divergent change: One class is commonly changed in different ways, for different reasons
· This denotes that there is too much responsibility that is placed on the class
· Shotgun surgery: Opposite to divergent change Lots of small changes to a lot of different classes
· High coupling for one purpose
· Characteristics of good software:
· Coupling: How strongly software elements are connected to other elements
· Interdependence between components, high coupling = dependence on the internal workings of another component
· Aim for loose coupling: Independent modifications and usage
· Cohesion: How related the responsibilities of the software elements are within a software component
· The degree to which all elements of a component or class work together
· If many modules call a class
· Loose coupling & high cohesion is good
· Test-driven development: Test cases before software Immediate testing to make sure code is correct
· SOLID principles: General guidelines you might want to follow
· Single responsibility principle: Many responsibilities in one class should probably be split
· Open-closed principle: Open for extension, closed for modification
· Liskov substitution principle: Objects in a program should be replaceable with instances of their subtypes without altering the correctness of the program
· Interface segregation principle: Many client-specific interfaces are better than one monolith interface
· Dependency inversion principle: One should depend on abstractions, not concretions
Law of Demeter: Principle of least knowledge. You (class) talk only to your friends
· Classes should know about and interact with as few classes as possible
· Assume as little as possible about other classes Information hiding
· Reduce interaction to ‘immediate friends’ and ‘local objects’ Aids loose coupling within the system
· Friends comprise of:
· Object itself and variables in the scope/global
· Objects passes as parameters
· Objects instantiated within the method
· Any component objects
· NOT objects returned by a method
How to solve problems without inheritance: Inheritance causes all the methods to be featured Can be a lot of additional baggage that does not make sense to include
· Delegation: Delegate the functionality to another class
· Composition: Reuse behaviours using one or more classes with composition
· Design principle: Favour composition over inheritance
Liskov Substitution Principle: Subtypes must be substitutable for their base types
· Things that sound right in English doesn’t necessarily translate to code
· E.G. Square “Is-A” Rectangle
· But setHeight and setWidth methods for Square don’t make sense to substitute for rectangle because it does unexpected behaviour (length of all sides instead of just height/width)
[image: A picture containing graphical user interface

Description automatically generated]
Figure 3 LSP example
Method Overriding: Rules
· Access level cannot be more restricted
· Static methods are not overridden, as they are associated with a class
Restructuring: Changing the internal structure of software
Refactoring: Restructuring software to make it easier to understand and cheaper to modify without changing its external, observable behaviour
· When to refactor? A general guide
· Adding functionality Makes it easier for future changes
· Bugfix
· Code review
· Methods should be allocated based on where it makes sense to utilise the information
· If the majority of data comes from a class, consider migrating the method to that class
· “Can this implementation be encapsulated within another context that makes more sense?”
· Can consider branching based on an attribute in another class as bad This can be encapsulated in the class that holds the data
· Prior Goals: Have verbose unit testing before Refactoring
· Post-Refactoring: Unit tests still pass
· External behaviour doesn’t change, internals of the refactored code can be changed
· Degrees of refactoring:
· Low Level
· Moving around code, variable declarations for ‘magic numbers’
· High Level Mostly only if the current code is bad
· Fundamentally changing the design patterns
· Changing language idioms (safety, brevity)
· Performance optimization
· ^ Proper testing is especially important here
· https://refactoring.com/catalog --> Examples of refactoring changes
Why do we need design patterns?
· Abstract class (inheritance)
· Need to suppress methods if not all subclasses can use the functionality
· Interface
· No code reusability if multiple internal implementations are needed to implement the interface methods
· What do you do? Use design patterns!	
· Strategy Patterns: Type of design pattern where you define a family of classes, encapsulate each one and then make them interchangable
· Use Interface variables as attributes for some guaranteed functionality. Functionality is defined in the implementing classes.
· Pass in objects, don’t use strings w/ switch statements
· Pass functionality into subclasses / objects, create new objects to abstract away combinations of objects
· E.G. Car(new electricMotor(), new drivingSystem()) Tesla()
· Passing in objects that implement certain interfaces
Design Pattern: Tried solutions to commonly recurring problems
[image:]
Figure 4 OOP Design Philosophy
State Pattern:
· Finite-State-Machine: Abstract machine that can be in exactly ONE state at a given time
· Composed of: list of its states, conditions for transition and the initial state
· State: Description of the status of the system
· Transition: Set of actions when a condition is fulfilled / event is received
· Identical stimuli trigger different actions depending on the current state
· Entry and exit actions may be associated with transitioning to/from states
· See State Transition Table (x: states, y:inputs state change)
State-Machine uses:
· Frequently used in UI
· Different aspect ratios
· Event driven interface
Design Principles:
· Identify and encapsulate behaviours that have varying implementations
· E.G. If flying can have different behaviours between different animals, we can encapsulate flying using a Flyable interface
· Allows us to alter / extend the varying parts without affecting the parts that do not depend on that particular implementation detail
· Program to an interface, not an implementation
· Program to a super type to allow for generalisation in the future
· E.G. utilise dynamic binding
· Dog d = new Dog(); d.bark(); Change to Animal d = new Dog(); d.makeSound();
· Exploit polymorphism by programming to the super type
· Behaviours NO LONGER locked to a concrete implementation. Now we can use a set of “behaviour classes” that implement the interfaces. Classes are associated with behaviours and they do not need to know the implementation details
[image: Diagram

Description automatically generated]
Figure 5 Design Pattern: Behavioural Interfaces Implemented by a set of implementing classes
[image: A picture containing diagram

Description automatically generated]
Figure 6 Integrating Instances with Behaviours
· Instance variable quackBehaviour and flyBehaviour are assigned based on what class of Duck
· Implementing behaviours are assigned to instances
· HAS-A >>>> IS-A
· Use composition over inheritance for behaviours
Strategy Pattern: Design pattern for the above duck example
· Motivation: You need to adapt the behaviour of an algorithm at runtime
· Intent:
· Define a family of algorithms, encapsulate each one, and make them interchangeable
· Strategy pattern is a behavioural design pattern that lets the algorithm vary independently from the context class using it
· Drawbacks: Increases the number of objects and relies on the client to be aware of the possible strategies
· Examples:
· Sorting a list: Quicksort, bubblesort, mergesort, etc
· Search: DFS, BFS, A*, etc
[image: Diagram

Description automatically generated]
Figure 7 Implementation of a Strategy Pattern
Observer Pattern: Used to implement distributed event handling systems
· Use case: when you want to use event-driven programming.
· An object maintains a list of its dependents
· Object called a subject / observable / publisher
· Dependents called observers / subscribers
· Notifies observers automatically of any state changes in the subject
How can you maintain the observer pattern with dynamically allocated observers and subjects?
· Aims:
· One-to-many dependency between objects without tight coupling
· Automatically notify an unbounded number of observers when the subject changes state
· Dynamically add and remove observers
[image: Graphical user interface, text, application

Description automatically generated]
Figure 8 Observer Pattern Possible Solution
· Subject:
· Attach observer, detach observer, notify all observers
· Observer:
· Update itself given a subject
[image: Diagram

Description automatically generated]
Figure 9 Observer Pattern UML Example
Model View Controller (MVC):
· Model never directly connects with the view
· Consider the botnet
· Controller is the interface which gets requests and returns the results of any function calls using the JSON arguments
· Models is the database and the code that works on the database
· View is the templates and user-facing display of the returned data
[image: Diagram

Description automatically generated]
Figure 10 Model View Controller MVC
User Centred Design:
· Specify context of use
· E.G. Amazon has a busy interface because they want to sell you lots of items, whilst Apple has a more minimalist design philosophy
· Quality of experience is far more likely to be a product differentiator compared to product experience
· Specify requirements.
· Create design solutions
· Evaluate design
Composite Pattern: Aim is to manipulate a single instance of an object just as we would manipulate a group of them
· No discrimination between a single (leaf) object vs a composite (group) object
· Composition of similar objects
· E.G. Calculating size of file is the same as calculating the size of a directory
· Possible Solutions:
· Uniformity: All child related operations are in the component interface
· All the Leaf objects have the same interface as Composite objects, except the leaf objects don’t need to add children
· Useful for dynamic structures where children types change dynamically (E.g. Leaf Composite and vice versa)
· Type Safety: Only define child related operations in the Composite class
· Client treats Leaf and Composite objects differently
· Useful for static structures where the child-related operations are not performed on unknown objects of type Component (E.G. through dynamic binding)
[image: Diagram

Description automatically generated]
Figure 11 Composite Pattern: Type safety vs uniformity
Design by Contract:
· Responsibilities are clearly assigned to different software elements, clearly documented and enforced during development through unit testing/language support
· Clear functionality demarcation helps prevent redundant checks
· Simplifies code and makes maintenance easier
· Can crash if required conditions are not satisfied
· Why use this design paradigm?
· This is an alternative to defensive programming. We don’t write checks for everything to save on performance
· Defensive programming might have overheads that are unnecessary for systems that do not need 24/7 availability
· No clear demarcation between responsibility between components that all check the input
· Makes maintenance more complex, then every client in the pipeline will need to be modified when input is changed
· Advantage: Guarantees reliability, safety, security, etc.
· In return, our software may break out of our specified responsibilities
· When does this apply?
· E.G: Student grading example. If a Grade class has to go down a marking pipeline with defensive programming methodologies
· Every single client will perform checks on the data, which can lead to redundant checking
· Want more efficiency compared to defensive programming, willing to take tradeoffs with security / validation
Design By Contract (DBC) Terminology: Software elements should define a contract / specification that governs its interactions with the rest of the software components
· Pre-condition: What is expected by the contract
· Undefined behaviour if violated
· Weaker in a subclass
· Post-condition: What does the contract guarantee
· Invariant: What does the contract maintain
· Constraints which should always be true before and after the execution
· Maintain invariants between the method calls (can violate between the pre and post-condition)
· Property that doesn’t change from the class or any object derived from the class
What is a contract?
· Declarative and must NOT include implementation details
· Precise, formal, verifiable
Exception: Object that gets propagated up the runtime stack until a calling method catches the exception
· Kinds of exceptions:
· Checked exception: Most common exception; Caught and handled by application
· Error: Exceptional condition that are external to the system (usually cannot anticipate or recover from these)
· Runtime exception: Internal application; Usually from bugs or logic errors
· For errors and runtime exceptions, we may not want to handle them and instead let the application break (for debugging purposes)
User defined exceptions: Extend Throwable
Testing Methodologies:
· Bombard with random data:
· Random data is often considered unbiased
Random Numbers: Software produces pseudo-random numbers. Cannot be truly random
· Pseudo-random numbers are numbers that are predictable
Contravariance:
Covariance
Iterator Pattern: Accessing each element in an aggregation object sequentially, without exposing the underlying implementation detail
· E.G. Sequentially iterating through the elements of a list, without exposing how the List is implemented (ArrayList, LinkedList, etc.)
· Class implements Iterable<T>
[image: Diagram

Description automatically generated]
Figure 12 Iterator Design Pattern
Decorator Pattern: Attaches additional responsibility to an object dynamically at the runtime
· Decorator class has a component, extend the decorated component by transparently forwarding all requests to it
· The additional responsibility is adding functionality before and after forwarding
· Pick and choose the layered decorators to add the behaviour
· Real world example: Layering input streams for filtering and transforming data. This is a data processing pipeline
· Original creation of component is unchanged
· Decorator and Component are abstract classes or interfaces
· Decorations cannot exist without the component they decorate
· Unwrap decorators by returning the contained component This is logically the default behaviour without the decorator (decorators don’t change the component’s fields)
[image: Diagram

Description automatically generated]
Figure 13 Decorator Pattern
[image: Text

Description automatically generated]
Figure 14 Decorator Pattern: How components are wrapped by decorators
[image: Diagram

Description automatically generated]
Figure 15 Decorator Pattern example: Coffee shop
Adapter Pattern: Provides adapted interface to an interface that the client expects
· Adapter contains an instance of the class that it wraps
· Adapter makes calls to the wrapped object (caller doesn’t reference wrapped object)
· Input Map (Adapter Pattern) Expected Output
[image: Diagram

Description automatically generated]
Figure 16 Adapter Pattern
Template Pattern: Define the overarching algorithm in the super class (generally an abstract class)
· Template method gives the algorithm (method calls each step (helper method) which needs to be executed)
· Primitive operations: Operations with default implementations or must be implemented by subclasses
· Concrete operations: Cannot be overridden
· Hook: The helper methods that hook into the overarching algorithm to add functionality In subclasses
· Hook operations are generally left empty in the superclass.
· Hook The helper method that is being implemented in the subclasses. Entirely dependent on the functionality that the subclass wants to provide
· Primitive Functionality that is always required. General implementation can be in super class or specific implementation in subclass
· Areas with possibly varying behaviours within the algorithm are designated to helper functions
· Subclasses override the helper functions to produce their custom behaviour
· Inversion of control: Subclass implements common (invariant) parts of the behaviour
· This means that subclasses do not control the behaviour of the parent class
· Parent class calls the operation of the subclass
Template vs Strategy pattern:
· Template: Inherit in class
· Alterations from extending parts in subclasses
· Strategy: Add behaviour at runtime
· Alterations by supplying different strategies at runtime
· When to use X?
· Template pattern has invariant regions of code (the algorithm) in the abstract class with the dependent code being run in subclasses
· Strategy pattern classes are independent to each other, with no defined algorithm which they add behaviour to
Factory method: Create objects by calling a factory method
· What does it solve?
· How can an object be created so that subclasses can redefine which class to instantiate?
· Subclasses can override the factory method to create a specific concrete implementing class
· How can a class defer instantiation to subclasses
· Define a method for creating objects
· Objects are now created by calling the factory method
· Constructors can only create one class
· Factories are an abstraction for constructors so you can generate multiple types from one factory
Abstract Factory Pattern: Create family of objects using a factory class
· Extending class of abstract factory give you the specific objects within a family of object
· Client selects which factory type to use
· Use cases:
· Different OS have different ways of making certain objects, family of distinct products for each OS
[image: Diagram

Description automatically generated]
Figure 17 Abstract Factory Structure
Builder Pattern: Extract object construction code out of its own class and move to a separate builder object
· Used substituting the constructor of complex objects which require lots of operations.
· Components of the builder pattern:
· Director: Directs constructor algorithm. Provides order of execution.
· Builder: Builds the object. Has methods which the director uses to build the object
· Why use the builder pattern?
· Builder can be substituted with other builders yet share director functionality for code reusability
[image: Design pattern overview]
Figure 18 Design Pattern Overview
[image: Diagram

Description automatically generated]
Figure 19 Builder Pattern Structure
Singleton Pattern: Creational design pattern that lets your ensure that a class has only one instance, while providing a global access point to this instance
· Solution:
· Make default constructor private Prevents other objects from using the new operator with the Singleton Class
· Static creation method that acts as a constructor. Following calls after initial construction returns the cached object
· Static construction method always returns the same object
· Should put synchronized access modifier on getInstance() method for singleton class
· Use cases: When you only want one instance of a class
· Log files
· Potentially database class?
· Model class?
[image: Graphical user interface, text, application, email

Description automatically generated]
Figure 20 Singleton Pattern
Visitor Pattern: Add behaviour in separate visitor class instead of integrating into existing class
· Problem: It should be possible to define a new operation for (some) classes of an object structure without changing the classes.
· Client’s software could be dependent on instantiation of class so it would be a hassle to modify
· Solution: Pass in instantiated object into one of the visitor’s methods, providing necessary data to for the added behaviour in the visitor
· Visitor class defines a set of methods for each different type of class
[image: Diagram

Description automatically generated]
Figure 21 Visitor Pattern
· Element you are visiting must implement the Visitable/VisitorElement interface
· Has accept(Visitor) method that calls the visitor v’s visit method
· Visitor:
· Has visit method that adds behaviour
· Element / Visitable:
· Has accept method that calls visit(element)
· Use case: Moving operations into visitor classes is beneficial when
· Many unrelated on an object structure are required
· Classes that make up the object structure are known to not change
· New objects need to be added frequently
· Algorithm involves several classes in the object structure Manage all in one location
· Works on several independent class hierarchies
· Limitation:
· Extensions to class hierarchy require visit methods to be added
image5.png
Here, there are two interfaces, FlyBehavior and QuackBehavior along with set of
classes that implement each concrete behaviour

Bere ¥ w
A Y *
f P
e
<<nptace>
o
: FlyNoWay
#H0{ o
3 Ok e lido natting - car ¢

for the quack

Game thing heve Y

viov; we have an I 5
1 intludes 3
B ot e o bemtle

mented /

<<intedace>>
QuackBohavior
quack()

Quack

8un-|:

quack) {
1l imglements duck quacking

‘quack() {
I/ rubber duckie squesk

image6.png
The behavior varidbles are
detlaved as the behavior
INTERFACE type.

These methods veplace

o a7
-7

image7.png
Context ks << intertace >

strategy.|Strategy IStrategy
+some_method(:void +Behaviorinterface() void
JATAAN
|
| |
.......... I Fd-]-Fd-[-F4
i 1 1
I | I
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC

+Behaviorinterface() void +Behaviornterface() void +Behaviorinterface() void

image8.png
« Define Subject and Observer interfaces, such that when a subject changes state, all
registered observers are notified and updated automatically.

* The responsibility of,

 a subject is to maintain a list of observers and to notify them of
state changes by calling their update () operation.

« observers is to register (and unregister) themselves on a subject (to get
notified of state changes) and to update their state when they are notified.

* This makes subject and observers loosely coupled.

image9.png
+ attach(Observer): void

+ detach(Observer): void
+ notify(): void

+ detach(Observer): void
+ notify(): void

+update(Subject): vold

image10.png

image11.png
Design for Type Safety: only define child-related * aCompetc) SoComaoner)
operations in the Composite class. o o G K

Design for Uniformity: include all child-related
See the next slide for more details. operations in the Component interface.

image12.png
Iterator)

Diagran| createlteratorf |- =55

Sample

Class

image13.png
Cllent |—>]-<emeenent | component

operason()
component.
operation):
Component
‘operaton() ‘operation()
Sample Decorator! | [Decorator2

;::.m opentin(] operaton()
2 addgehavior() | | addBehavior()

image14.png
1. Subclass the original Component class into a Decorator class (see UML diagram);
2. In the Decorator class, add a Component pointer as a field;

3. In the Decorator class, pass a Component to the Decorator constructor to initialize the Component pointer;
4. In the Decorator class, forward all Component methods to the Component pointer; and
5. In the ConcreteDecorator class, override any Component method(s) whose behavior needs to be modified.

image15.png
need to implement. not. enly costl) but sko
escriptionl). Well sec why in 3 moment...

COMP2511: Decorator and Adapter Pattemns

image16.png
e
Adaptee
Cllent Target

operationl) Opedtion)

Object
Adapter

Sample
Class — adaptee.
Dagam psstons- specificOperatontl

image17.png
1

pw

- EEr———

ConcreteFactoryl
r H
i i " creteProduciA). Podoch
v v - cresteProductB) Produc
Conrete Concrete i
rotuat| 2 ot
aitertaces
v v R oy Aoy
Producth Producs.
® e e
-y -y * createProduct8): Productd + someperation
o |) [comame 7y
productA2 |) | products2 i Pt - canycreseProguaA)
A A T
retum new re————ry

* createProducts): Product

Abstract Products declare interfaces for a set of distinct but related products which make up a product family.
Concrete Products are various implementations of abstract products, grouped by variants. Each abstract product
(chair/sofa) must be implemented in all given variants (Victorian/Modern).

The Abstract Factory interface declares a set of methods for creating each of the abstract products.

Concrete Factories implement creation methods of the abstract factory. Each concrete factory corresponds to a specific

variant of products and creates only those product variants.

The Client can work with any concrete factory/product variant, as long as it communicates with their objects via abstract

interfaces.

image18.png
*» Creational Patterns ++ Behavioral Patterns

¢ Abstract Factory % Iterator

%+ Factory Method % Observer

< Builder < State

¢ Singleton % Strategy
<+ Template
% Visitor

«* Structural Patterns
<+ Adapter
<« Composite
%+ Decorator

image19.png
Builder Pattern: Structure

<+ The Builder interface declares product
construction steps that are common to all types
of builders.

< Concrete Builders provide different
implementations of the construction steps.
Concrete builders may produce products that
don’t follow the common interface.

< Products are resulting objects. Products
constructed by different builders don’t have to
belong to the same class hierarchy or interface.

«+ The Director class defines the order in which to
call construction steps, so you can create and
reuse specific configurations of products.

«* The Client must associate one of the builder
objects with the director.

COMP2511: Creational Design Patters

= new ConcreteBuilder1()

= ew Director)
amase) ®
Product p = b gecesiz)

¢

Client 4[
cinterface» Director
Builder
——""__le |- builder: Builder
+reset)
+ buildStepA) + Director(builder)
+ buildStepB) + changeBuilder(builder)
+ buildStepZ) + make(type)
buldecrese)
W (type == simple) {
e Concrete bulderbulldSieph
otse
Builder1 Builder2 builderbuildsStepB)
bulderbulasiesz)
~result:Productt | |- result: Product2 | |
+reset) “reset) -
+ buildStepA) + buildStepA) (TGt
+ buildStepB) + buildStepB)
+ buildStepZ) + buildStepZ() result setFeatureB)
+ getResul(): + getResul(:
Productl Product? return this result
[v
Product1 @ Product2 N

image20.png
public class MySingleton {
private static MySingleton single instance = null;
private LocalTime localTime;

private MySingleton() {
localTime = LocalTime.now();

}
public static synchronized MySingleton getInstance() {
N if (single_instance == null) {
single_instance = new MySingleton();
1 }
return single_instance;
}

public LocalTime getTime() {
return localTime;
}

image21.png
Visitor Pattern: Structure

.The Visitor interface
declares a set of visiting
methods that can take
concrete elements of an
object structure as
arguments.

. Each Concrete Visitor
implements several versions
of the same behaviors,
tailored for different
concrete element classes.

‘The Client usually represents a collection or some

other complex object (for example,
a Composite tree).

. ‘The Element interface declares
amethod for “accepting”
visitors. This method should

«interface» «interface» have one parameter declared
Visitor [|GElememt | withthetypeofthevisitor
- interface.
+ visit(e: ElementA) + accept(v: Visitor)
+ visit(e: ElementB)
H ElementA . Each Concrete Element must
Concretevisitors | implement the acceptance
method. The purpose of this
1l + featureA() method is to redirect the call to
P H + acceptiy: Visitor) the proper visitor's method
W :!:!“:j ::x:‘“':’ corresponding to the current
jsite:) Elements element class. Be aware that
even if a base element class
- .
// Visitor methods know the’ - implements ‘method, all
1/ concrete type o the subclasses must still override
1 element it works with. N '“"‘"“Pv § this method in their own classes
efeatureB) [Emcosps vaVistor) and call the appropriate method
on the visitor object.

COMP2511: Visitor Pattern

image1.png
class (class diagram)

Account

-name: String
-balance: float

+getBalance(): float
+getName() : String
+withDraw(float)
+deposit(float)

image2.png
* Classes

* Relationships

Dependency

Aggregation

Composition

Association

Directed
Association

image3.jpeg
LISKOV SUBSTITUTION PRINCIPLE

If It Looks Like A Duck, Quacks Like A Duck, But Needs Batteries - You
Probably Have The Wrong Abstraction

image4.png
* Knowing OO basics does not make you a good
OO designer

 Good OO designs are reusable, extensible and
maintainable

0O Basics 0O Principles

» Abstraction * Principle of least QO Patterns
* Encapsulation knowledge — talk only to Strategy
* Inheritance your friends * State

Polymorphism * Encapsulate what varies

* Favour composition over
inheritance

* Program to an interface,
not an implementation

